Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions.
نویسندگان
چکیده
In some studies, tissues from plants that have been genetically transformed to overproduce antioxidant enzymes sustain less damage when abruptly exposed to short-term chilling in the laboratory. However, few studies have examined the performance of transgenic plants during longer-term growth under chilling conditions. We compared growth of transgenic cotton that overproduces glutathione reductase (GR+; ∼40-fold overproduction) to growth of the wild type in a controlled environment chamber as leaf temperature was lowered from 28° to 14°C over 9 d and for a subsequent 9-d period at 14°C. In wild-type and GR+ cotton, chilling temperatures resulted in decreased dark-adapted F(v)/F(m) (the ratio of variable to maximal fluorescence; a measure of maximum photosystem II quantum yield) and mid-light period photosystem II quantum yield, coupled with increased 1 - q(P) (a nonlinear estimate of the reduction state of the primary quinone acceptor of photosystem II). The capacity for photosynthetic oxygen evolution decreased during the first portion of the chilling exposure, but recovered slightly during the second half. At no point during the chilling exposure did the performance of GR+ plants differ significantly from that of wild-type plants in any of the above parameters. The absence of an effect of GR overproduction under longer-term chilling may be explained, in part, by the fact that wild-type cotton acclimated to chilling by upregulating native GR activity.
منابع مشابه
Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition
The photosynthetic performance of leaf discs of transgenic cotton with fourfold elevated activity of ascorbate peroxidase in the chloroplast stroma (APX / plants) was compared to that of wild type (Gossypium hirsutum L. cv. Coker 312) during exposure to 10 8C and 500 mmol photons m 2 s . APX / leaves did not exhibit as large of an increase in cellular H2O2 that was evident in wildtype leaves sh...
متن کاملEvaluation of Stability of Chitinase Gene in Transgenic Offspring of Cotton (Gossypium hirsutum)
Cotton cultivar Coker has been already transformed with recombinant pBI121-chi via Agrobacterium tumefaciens. The T-DNA region of pBI121-chi carries the chitinase (chi ) gene from bean and is under the control of the CaMV35S promoter. T1 and T2 progenies of transgenic cotton containing the chi gene were used in this study. Polymerase chain reaction (PCR), Southern and Western blotting data con...
متن کاملPhysiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.
The influence of plant interference and a mild drought on gas exchange and oxidative stress was investigated using potted plants of two cotton species (Gossypium hirsutum L. cv. Delta Pine 5415, and Gossypium barbadense L. cv. Pima S-7) and spurred anoda (Anoda cristata L. Schlecht.) of the Malvaceae. Without interference, cotton and spurred anoda had similar net photosynthesis (Pnet) but diffe...
متن کاملEnhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against...
متن کاملAgrobacterium-mediated Transformation of Cotton (Gossypium hirsutum) Using a Synthetic cry1Ab Gene for Enhanced Resistance Against Heliothis armigera
Cotton (Gossypium hirsutum L.) is an important fiber crop in Iran, cultivated on 150000-200000 ha of land. In Iran the estimated loss due to the insect pest is more than 30%. Traditionally, pests are controlled by 10-12 times spraying per growing season of environmentally harmful chemical insecticides (e.g. endosulfan and/or methosystox). In order to produce transgenic cotton resistance to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 90 9 شماره
صفحات -
تاریخ انتشار 2003